
The Beauty & Joy of
Computing

Lecture #8
Recursion

The coolest movie last year
highlights recursion, and it was up
for best picture. If you haven’t seen
it yet, you should, because it will
help you understand recursion!!

UC Berkeley EECS
Sr Lecturer SOE

Dan Garcia

en.wikipedia.org/wiki/Inception_(film)
New Rule: Use scratch paper in lab!

The problems there are hard enough that you won’t be able to keep it in your head!

UC Berkeley “The Beauty and Joy of Computing” : Recursion I (2)

Garcia

§  Recursion
ú  Demo

   Vee example & analysis
   Downup

ú  You already know it
ú  Definition
ú  Trust the Recursion!
ú  Conclusion

Overview
www.worldofescher.com/gallery/A13.html!

M. C. Escher : Drawing Hands!

UC Berkeley “The Beauty and Joy of Computing” : Recursion I (3)

Garcia

a)  Strongly disagree
b)  Disagree
c)  Neutral
d)  Agree
e)  Strongly agree

“I understood Vee & Downup”
M. C. Escher : Fish and Scales!

UC Berkeley “The Beauty and Joy of Computing” : Recursion I (4)

Garcia

Definition

§  Recursion: (noun) See recursion. J

§  An algorithmic technique where a function, in order to
accomplish a task, calls itself with some part of the task

§  Recursive solutions involve two major parts:
ú  Base case(s), the problem is simple enough to be solved directly
ú  Recursive case(s). A recursive case has three components:

   Divide the problem into one or more simpler or smaller parts
   Invoke the function (recursively) on each part, and
   Combine the solutions of the parts into a solution for the problem.

§  Depending on the problem,
any of these may be trivial or complex.

www.catb.org/~esr/jargon/html/R/recursion.html
www.nist.gov/dads/HTML/recursion.html

UC Berkeley “The Beauty and Joy of Computing” : Recursion I (5)

Garcia

You already know it!

UC Berkeley “The Beauty and Joy of Computing” : Recursion I (6)

Garcia

Trust the Recursion
§  When authoring recursive code:

ú  The base is usually easy: “when to stop?”
ú  In the recursive step
   How can we break the problem down into two:
  A piece I can handle right now
  The answer from a smaller piece of the problem

   Assume your self-call does the right thing
on a smaller piece of the problem

   How to combine parts to get the overall answer?

§  Practice will make it easier to see idea

UC Berkeley “The Beauty and Joy of Computing” : Recursion I (7)

Garcia

§  Recursion is n Iteration
(i.e., loops)

§  Almost always, writing a
recursive solution is u
than an iterative one

a)  more powerful than, easier
b)  just as powerful as, easier
c)  more powerful than, harder
d)  just as powerful as, harder

Sanity Check…

http://xkcd.com/244/"

UC Berkeley “The Beauty and Joy of Computing” : Recursion I (8)

Garcia

§  Behind Abstraction,
Recursion is probably
the 2nd biggest idea
about programming
in this course

§  It’s tremendously
useful when the
problem is self-similar

§  It’s no more powerful
than iteration, but
often leads to more
concise & better code

Summary

http://www.dominiek.eu/blog/?m=200711"

