
The Beauty & Joy of 
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Lecture #8 
Recursion 

The coolest movie last year 
highlights recursion, and it was up 
for best picture. If you haven’t seen 
it yet, you should, because it will 
help you understand recursion!! 
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en.wikipedia.org/wiki/Inception_(film) 
New Rule: Use scratch paper in lab! 

The problems there are hard enough that you won’t be able to keep it in your head!  
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§  Recursion 
ú  Demo 

   Vee example & analysis 
   Downup 

ú  You already know it 
ú  Definition 
ú  Trust the Recursion! 
ú  Conclusion 

Overview 
www.worldofescher.com/gallery/A13.html!

M. C. Escher : Drawing Hands!
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a)  Strongly disagree 
b)  Disagree 
c)  Neutral 
d)  Agree 
e)  Strongly agree 

“I understood Vee & Downup” 
M. C. Escher : Fish and Scales!
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Definition 

§  Recursion: (noun) See recursion.  J 

§  An algorithmic technique where a function, in order to 
accomplish a task, calls itself with some part of the task 

§  Recursive solutions involve two major parts: 
ú  Base case(s), the problem is simple enough to be solved directly 
ú  Recursive case(s). A recursive case has three components: 

   Divide the problem into one or more simpler or smaller parts 
   Invoke the function (recursively) on each part, and 
   Combine the solutions of the parts into a solution for the problem. 

§  Depending on the problem,  
any of these may be trivial or complex. 

www.catb.org/~esr/jargon/html/R/recursion.html 
www.nist.gov/dads/HTML/recursion.html 
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You already know it! 
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Trust the Recursion 
§  When authoring recursive code: 

ú  The base is usually easy: “when to stop?” 
ú  In the recursive step 
   How can we break the problem down into two: 
  A piece I can handle right now 
  The answer from a smaller piece of the problem 

   Assume your self-call does the right thing  
on a smaller piece of the problem 

   How to combine parts to get the overall answer? 

§  Practice will make it easier to see idea 
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§  Recursion is n Iteration 
(i.e., loops) 

§  Almost always, writing a 
recursive solution is u 
than an iterative one 

a)  more powerful than, easier 
b)  just as powerful as, easier 
c)  more powerful than, harder 
d)  just as powerful as, harder 

Sanity Check… 

http://xkcd.com/244/"
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§  Behind Abstraction, 
Recursion is probably 
the 2nd biggest idea 
about programming 
in this course 

§  It’s tremendously 
useful when the 
problem is self-similar 

§  It’s no more powerful 
than iteration, but 
often leads to more 
concise & better code 

Summary 

http://www.dominiek.eu/blog/?m=200711"


